REAL TEST 4
SAMPLE FINAL EXAM FOR AU 12
 QUIZ 8  (ANSWERS)
NOTES
SAMPLE TEST2
SAMPLE TEST3
READ ALL EXAMPLES. SOME PROBLEMS ARE JUST LIKE AN EXAMPLE. 
CH.  8  
CH. 8 MULTIPLE CHOICE TBA  - Exercise/problems:  General Theory of Collisions and Momentum Conservation: 2, 8 , 14 (ICQ-do not turn in), 13, 18, Inelastic collisions 22 (ICQ), 63, 74, 29, elastic collisions 31, 34( ICQ--try 76)), 35, 76*, 18 (check if elastic) , Impulse = Force*time = change in momentum 40 (try 44 !) center of mass 46 (try 52 and 51)  
TURN IN: General Theory of Collisions and Momentum Conservation: 2 (b) and (c) only, 8 , 13, Inelastic collisions  63, 74, 29, elastic collisions 31, 35, 18 (check if elastic), Impulse = Force*time = change in momentum 40 (try 44 !) center of mass 46 (try 52 and 51)  
* DISCUSSIONS PROVIDED. 
SELECTED DISCUSSIONS TO exercises/problems BELOW.
ALL PROBLEMS ARE DUE EVEN THE ONES WITHOUT DISCUSSIONS, WHICH ARE DESIGNED TO HELP YOU DO RELATED EXERCISES.
2.

(b)
sum of Px = -(6.0 kg)*(4.0 m/s)
sum of Py = (9.0 kg)*(3.0 m/s)
(c)
sum of Px = zero by symmetry
sum of Py = -2*(0.8 kg)*(5.0 m/s)*sin 55

8.(a)
sum of Pix = sum of Pfx .
0 = (725/g)*(1.25 m/s) (N)  +(625/g)*V, where V is the x-component of momentum of lighter skater. Note V <0. 
(b) Compute (1/2)*(725/g)*(1.25 m/s)2  + (1/2)*(625/g)*V2 .
13. sum of Pix = sum of Pfx .
(0.250 kg)*V  + 0 = (0.250 kg)*( -0.120 m/s)    +  (0.350)*(0.650 m/s) , where the initial V is the x-component of momentum of lighter puck. Note V > 0.
63. This is a 1D problem of conservation of momentum occurring at bottom  of swing on vine. The collision occurs horizontally along an instantaneous x -axis. We equate the total x directed  momentum  just before and just after r the collision. M*V + 0 = MVf + mVf since stuntman and mad villain have the same common velocity just after the collision; they remain interlocked at a common decreasing velocity during the entire time they slide. But just before and just  after the collision we have:
M*V = (M +  m)*Vf  where V the initial x-component of momentum  of stuntman is found using conservation of energy:
Mgh = (1/2)*M*V2.   Find  V > 0.
(c) Use conservation of energy
(1/2)*(M +  m)*Vf 2  = Heat.
Heat = fk*D = (0.250)*(m+M)*g , where fk   = 0.250*N , where N = mg on the flat surface with no extermal vertical component of force.  Find D.
74. See example 8.7.  m*V = (m + M)*Vf, where  V the initial x-component of momentum of bullet before impact.
Now use  conservation of energy (1/2)*(m +  M)*Vf  = (m + M)*gh,  where h = L*(1- cos 34.7). Solve  these two equations simultaneously for Vf  and  V
29. See example 8.8 .
31. See example 8.9 .  (0.300 kg)*(0.80 m/s) = (0.300 kg)*V + (0.150 kg)*V ' and 0.80 m/s = V' - V. Solve these two equations simultaneously for V and V'.
35 

(b) (2.00 kg)*(2.00 m/s) = (2.00 kg)*V + (10.0 kg)*V ' and 2.00 m/s = V' - V. Solve these two equations simultaneously for V and V'
(a) At the moment when the spring is at maximum compression the  speed of the cars are equal  and is given by Vf. Solve:
 m*V = (m +  M)*m*V = (M +  m)*Vf, where V = 2.00 m/s and m = 2.00 kg  and M  = 10.00 kg.  Find Vf . The use conservation of energy:
 (1/2)*m*V2  = (1/2)*(m +  M)*Vf2  + Us. where Us is the potential  energy of the effective spring representing the bumpers at maximum compression. 
18. 
(a) See example 8.11. Even though this problem  is not necessarily involving an elastic collision,   the same method of solution applies. (0.400 kg)*(0.250 m/s) = (0.400 kg)*(0.200 m/s)*cos 36.9    + (0.600 kg)*V*cos theta
and 0 = 0.400 kg)*(0.200 m/s)*sin 36.9    - (0.600 kg)*V*sin theta. Solve these two equations simultaneously for V and theta. Isolate V cos theta and V sin theta and divide the two equations to solve for tan theta and theta. Then go back and find V.
(b) The kinetic energy of the system before the collision is the kinetic energy of the 0.400 kg mass since the other object is initially at rest. Compute this initial  kinetic energy. Then compute the final system (total) kinetic energy = 
 (1/2)*(0.400 kg)*(0.200 m/s)2 +  (0.600 kg)*V2.  Compare the two kinetic energies.
40 Y component  of impulse = Y component of change in momentum = m*Vfy  - m*Viy.  The initial velocity of the ball is zero and the final y component  of velocity is found by solving  0 = (Vfy)2 - 2*g*(5.50 m).
46  (a) Xcm = [(9.00 kg)*1.5 * (7.5 kg)*(2.4)]/(16.5 kg).
(b) Repeat with the right end at x = 0.