Throughout this examination the symbol for out is ${ }^{\odot}$. The symbol for in is \ominus. SHOW ALL WORK.

1. (40 points) At some instant, two protons on "try out" at CERN's epochal experiment move in opposite directions horizontally. They travel relative to stationary midpoint P . The distance d is $8.00 \times 10^{-15} \mathrm{~m}-$ on the order of a typical nuclear separation. The proton charge is $e=1.6 \times 10^{-19} \mathrm{C}$. The upper proton moves half as fast as the lower one, which has nonrelativistic speed $\mathrm{v}=9.00 \times 10^{6} \mathrm{~m} / \mathrm{s}$.

(a) (30 points) When the two charges are at the vertically displaced locations shown in the above figure, what are the DIRECTION AND MAGNITUDE of the NET magnetic field they produce at P ?
(b) (4 points) What is the direction and magnitude of the magnetic force on the upper proton?
(c) (2 points) What is the direction and magnitude of the magnetic force on the lower proton?
(d) (4 points) If the upper proton's direction of motion were reversed, so both charges were moving in the same direction, what would be the direction and magnitude of the magnetic force on the upper proton? What's the direction and magnitude of the magnetic force on lower proton in that case?
(e) EXTRA CREDIT (4 POINTS) Using symbols, including k and μ_{o}, find the ratio of the magnitudes of the magnetic force over the electric force on upper proton. Which force has the larger magnitude, the electric or magnetic?
2. (40 points) This problem deals with a sensitive current sensor based on detection of a magnetic field at a central location. Use symbols. Find the
(a) (10 points) direction and
(b) (26 points) magnitude
of this magnetic field at point P due to the quarter-circular section of wire with current I shown in the schematic of sensor. The circular-arc section has radius R and point P is at the center.
(c) (4 points) Using and explaining a formula from Ch. 28, show that current I in the long straight sections of the wire produce no field at P.

3. (18 points) Current sensor based on a magnetic field due to straight wire section. A conductor of length 2L carries a current I.

Using symbols, find
(a) (6 points) The direction and
(b) (8 points) magnitude
of the magnetic field at point P a distance x from the conductor on its perpendicular bisector.
(c) (4 points) What is the answer to part (b) in the limit that L goes to infinity while distance x is held constant?

4. (40 points) Inside a damaged control panel on the Star Federation Ship Enterprise, two horizontally displaced long parallel wires have currents flowing as shown. The wires are perpendicular to the page. The distance between the wires is $d=0.035 \mathrm{~m}$. The current I_{A} in wire A is 9.00 (A) OUT. The current I_{B} in wire B is 9.50 (A) IN. Figure $\mathbf{2}$ is for part (d).

Note: $\mu_{0}=1.257 \times 10^{-6} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}=4 \pi 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}$. For parts (a), (b), (c) see figure 1 ; for part (d), figure 2.
(a) (20 points) What is the magnitude of the net magnetic field due to both wires at midpoint P of the perpendicular segment between wires?
(b) (10 points) What is the direction of the net magnetic field due to both wires at midpoint \mathbf{P} ?
(c) (6 points) What is the magnitude and direction of the magnetic force on a 1.00 m section of wire B due to the magnetic field of wire A?
(d) (4 points) In figure 2, a point particle with negative charge q at midpoint P between wires moves with velocity OUT OF PAGE . What is the (i) direction and (ii) magnitude of the force on the charge at that moment, assuming $q=-1.4 \times 10^{-6}(\mathrm{C})$ and speed $\mathrm{v}=$ $2.00 \times 10^{6} \mathrm{~m} / \mathrm{s}$.

figure 1

figure 2
5. (35 points) A single circular loop of radius $r=1.0 \mathrm{~m}$ is placed in a region where a uniform magnetic field is perpendicular to the loop's plane. The magnetic field vector points in. While the vector points in, the magnitude \boldsymbol{B} of the magnetic field is allowed to change linearly with time t according to the equation:
$B=B_{0}-0.0150 \cdot t(T)$, where time t is in seconds. Assume at time t the expression for B is positive and the vector \vec{B} points in. B_{0} is the value of the changing magnitude B at time $t=0$.
(a) (10 points) What is the direction of the induced current in the loop, clockwise or counterclockwise, for $t \geq 0$? Please indicate this direction by drawing an arrow at the wire. Explain your reasoning.
(b) ($\mathbf{1 0}$ points) What is the direction of the induced magnetic field vector $\vec{B}_{\text {ind }}$, in or out, for $t \geq 0$? Please indicate this direction by drawing a symbol within the loop boundary. Explain your reasoning.
(c) (10 points) Calculate the magnitude $|\varepsilon|$ of the induced emf (in volts) for $t \geq 0$.
(d) (5 points) Suppose the loop has a resistance $R=800.00 \Omega$. What would be the value of the induced current Ifor $t \geq 0$?

6. EXTRA CREDIT. 12 POINTS. LR series circuit with current build up. An inductor with an inductance $\mathrm{L}=2.50 \mathrm{H}$ and a resistor with $R=8.00 \mathrm{ohms}$ are connected in series to the terminals of a battery with an emf of $6.00(\mathrm{~V})$. The switch connecting these three series elements is closed at $t=0$ and the current begins to increase from its initial value of zero. Find:
(a) (3) the initial rate of change of the current in the circuit.
(b) (3) the rate of change of the current when the current is 0.500 (A)
(c) (3) the current 0.250 seconds after the switch is closed
(d) (3) the final steady state current after a very long time.

bol
$B_{1}=\frac{1}{4}\left(B_{1}\right.$ PART $\left.\Theta\right)$ is TRUC.
zn. We Show: v

$$
\left.B_{1} \text { PACT(}\right)=\mu_{0} \cdot \frac{E V}{q 2}=\frac{2}{3} \cdot B_{N E T}
$$

$$
\vec{F}_{z_{1}}=-\vec{F}_{12}
$$

$$
\left.B_{1} \text { PART } 9\right)=\frac{2}{3} \cdot\left(0.338 \times 10^{10}\right)
$$

since. THE LOWER YROTOM contributes 2 units out of 3 units of $\frac{v}{2}$.

$$
\begin{aligned}
B_{1} \operatorname{AACT}(a) & =0.225 \times 10^{9} \\
& =2.25 \times 10^{9}
\end{aligned}
$$

$$
\begin{aligned}
B_{1} \text { PACT }(a) & =2.25 . \times 10^{9}(t) \\
\rightarrow B_{1} \operatorname{PART}(\mathrm{~b}) & =\frac{1}{1} \bar{B}_{1} \operatorname{PART}(\mathrm{a})
\end{aligned}
$$

FiRst let verify
opposite direction:

EQUAL MAGNitude verification:

$$
\begin{aligned}
& B_{1}=0.563 \times 10^{9}(1) \cdot \\
& F=e \frac{v}{3} \cdot B_{1}=1.6 \times 10 \times \frac{9}{2} \times 10 \cdot B_{1}
\end{aligned}
$$

$$
\left.F_{21}=e_{2}^{V} \cdot B_{1}=1.6 \times 10 \times \frac{1}{2} \times 10^{-19} \cdot B_{1} \right\rvert\,
$$

$$
\begin{aligned}
& \left.F_{21}={ }^{2}{ }^{1} 119\right)\left(4.5 \times 10^{0}\right)\left(0.563 \times 10^{9}\right) \\
& F_{21}=\left(1.6 \times 10^{2}\right)\left(1.05 \times 10^{-4}(\mathrm{~N})\right.
\end{aligned}
$$

$$
\begin{aligned}
& F_{12}=e^{V B_{2}} \sin 90^{\circ} \\
& -B_{2}=\frac{\mu_{0}}{4 \pi} \cdot \frac{e \cdot\left[\frac{V}{2}\right]}{(2 d)^{2}} \\
& B_{2}=\frac{\mu_{0}}{32 \pi} \cdot \frac{e v}{d^{2}} \\
& F_{12}=e \cdot V \cdot B_{2} \\
& F_{12}=e V \cdot \frac{\mu_{0}}{32 \pi} \cdot \frac{e v}{d^{2}} \\
& F_{12}=\frac{\mu_{0} e^{2} v^{2}}{32 \pi d^{2}} \\
& F_{12}=F_{21} \cdot Q E D
\end{aligned}
$$

(e)
RATIO:

$$
\frac{\frac{\mu_{6}}{32 \pi} \cdot \frac{e^{2} U^{2}}{d^{2}}}{x}
$$

$$
\begin{aligned}
& K=\frac{1}{4 \pi \varepsilon_{J}} \\
& \Rightarrow{\underset{R A T I O}{C}}_{\Longrightarrow}^{\infty} \frac{m_{0}}{\left(\frac{1}{4 \pi \varepsilon_{0}}\right)} \cdot \frac{V^{2}}{8 \pi} \\
& \text { NATIO }=\frac{\mu_{0} \varepsilon_{0} \cdot V^{2}}{2} \\
& \text { note: } c_{c}=\frac{1}{\mu_{0} \varepsilon_{0}} \\
& \text { wherel } C=3 \times 10^{8} \frac{\mathrm{~m}}{5}
\end{aligned}
$$

$$
\vec{F}_{z_{1}}=e \frac{v}{2} \cdot B \sin 90^{\circ}
$$

$$
=e \frac{v}{2} \cdot\left(\frac{\mu_{0}}{16 T} \cdot \frac{e v}{q^{2}}\right)
$$

$$
=\frac{\mu_{0}}{32 \pi} \cdot \frac{e^{2} v^{2}}{d^{2}}
$$

$$
F_{72}=F_{21} .
$$

\vec{F}_{12} is up, opposite \vec{F}_{2}
(2.)
entegration preserves the dípection: \vec{B}_{p} at P is ovt.
(b.)

$d B_{p}=\frac{M_{0}}{4 \pi} \cdot \frac{I d S}{R^{2}}$

$$
\begin{aligned}
& B_{p}=\frac{\mu_{0}}{4 \pi} \cdot \frac{I}{R^{2}} \cdot \int d s=\frac{\mu_{0}}{4 \pi} \cdot \frac{I}{R^{2}} \cdot \frac{\Pi_{2}}{2} R \\
& \frac{B_{p}}{}=\mu_{0} I / 8 R, \text { OUT} 0
\end{aligned}
$$

ne will intespatie U
from Y YN To $y=0$ and mustipty the kesult by 2 dul To symmetry:

$$
\begin{aligned}
& 1 y=-x \cdot \cot \theta \\
& d y=-x \cdot\left(-\csc ^{2} \theta\right) d \theta \\
& d y=+x \csc ^{2} \theta d \theta>0 \\
& d B= \frac{\mu}{4 \pi} \cdot \frac{I \cdot x \cdot \csc ^{2} \theta d \theta \sin \theta}{x^{2} \csc ^{2} \theta} \\
& \sin c e r=x \cdot \csc \theta \\
& \text { Because } \frac{x}{r}=\sin \theta \\
& \text { andcsc } \theta=\frac{r}{x} \\
& d B= \frac{\mu_{0}}{4 \pi} \cdot \frac{I}{x} \cdot \sin \theta d \theta \\
& B= 2 \cdot \frac{\mu_{0}}{4 \pi} \cdot \frac{I}{x} \cdot \int_{\sin \theta}^{\sin \theta} \\
& \theta_{\min }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (C) as } L \rightarrow \infty \\
& B=\frac{\mu_{0} \pm}{2 \pi x} \cdot \lim _{L \rightarrow \infty}\left[\frac{L}{\sqrt{L^{2}+x^{2}}}\right] \\
& B=\frac{\mu_{0} I}{2 \pi x} \cdot 1 \\
& B=\frac{\mu_{0} I}{2 \pi x} \\
& \vec{B}=\frac{\mu_{0} I}{2 \pi x}
\end{aligned}
$$

same result as Amperér $\angle A W$
(4.) right THUMgOMT RT. $\prod_{\substack{\text { fingers }}}^{\substack{\text { and }}}$

$$
=(114.29)(18.50) \times 10^{-7}(\uparrow
$$

$=2.1 \times 10^{3} \times 10^{-7}$ $=2.1 \times 10^{-4} T=$ Magni-

(a)

$$
\text { a) } \begin{aligned}
& B_{A}+B_{B}=\left|\vec{B}_{\text {net }}\right| \\
= & \frac{\mu_{0}}{2 \pi \frac{d}{2}}[9.00+9.50] \\
= & \frac{\mu_{0}}{\pi d}[18.50]= \\
= & \frac{4 \pi \times 10^{-7}}{\pi d} \cdot[16.50]= \\
= & \frac{4 \times(0)}{\rho(10.035)}[18.50]
\end{aligned}
$$

$$
F=\frac{\mu_{0} I_{A} I_{B} \cdot(1 \mathrm{~m})}{2 \pi d}
$$

$$
=\frac{4 \pi \times 10^{-7}(9)(9.5)(1)}{2 \pi(0.035)}
$$

(d.) $\underset{V}{\rightarrow} \vec{B}_{\text {NeT }} F$ Force is sight since $q<0$.
$|\vec{F}|=F=q \cup B \sin 90^{\circ}$
$=q \vee B=1.4 \times 10^{6} \times 2 \times 10^{6} \times\left(2.1 \times 10^{-4}\right)$
(4(d) $|\vec{F}|=5.9 \times 10^{-4}(\mathrm{c})$
$5(9$.
$|\vec{B}|$ derreasing

$$
\begin{aligned}
& \frac{d B}{d t}=-0.015 \\
& \left|\frac{d B}{d t}\right|=0.015 \\
& \Rightarrow\left(\varepsilon \mid=\pi r_{0}^{2} 0.015\right. \\
& =\pi(1)(0.015) \\
& =0.0471(\mathrm{~T}) \\
& =47 \mathrm{~mJ} .
\end{aligned}
$$

(b.)

I $\propto \otimes \stackrel{\rightharpoonup}{B}_{\text {No }}$
$\vec{B}_{\text {iND }}$ is ins
from CH 28.
(c.) $|k|=A\left|\frac{d B}{d E}\right|$
(d.)

$$
\begin{aligned}
& \text { di) }=\frac{181}{800 \Omega} \\
&=\frac{0.0471}{800}(\mathrm{~A}) \\
&=5.89 \times 10^{-5} \mathrm{~A} \\
&=58.9 \mu \mathrm{~A}
\end{aligned}
$$

(6) cospied rext
ferm * 230-ch 30

$$
\begin{aligned}
& \text { CH3O. } \\
& \text { (a) Note }: \frac{\varepsilon}{R}=\frac{6}{8}=0.75(\mathrm{~A}) \\
& i=\frac{\varepsilon}{R}\left(1-e^{-t}\right. \\
& \tau=\tau_{L}=L_{R}=0,313(s) \\
& \frac{d I \cdot}{d t}=-\frac{\Sigma}{R}\left[-\frac{t}{\tau} e^{-t / r}\right] \\
& =\frac{\Sigma}{R} \cdot \frac{1}{L / R} e^{-t / R} \\
& \frac{d I}{d t}=\frac{\varepsilon}{L} e^{-t / \imath} \\
& \text { at } t=0 ; \frac{d t}{d t}=\frac{\varepsilon}{C} \\
& =\frac{6}{2.5}=2.4 \frac{\mathrm{~A}}{5} \\
& \text { (c.) }
\end{aligned}
$$

(6.) Pone ine? 19

$$
0.5=\frac{\Sigma}{R}\left(1-e^{-t}\right)
$$

$$
\text { and } \frac{d I}{d t}=\frac{\varepsilon}{L} e^{-t / \tau}
$$

NOW(A) SAYS!

$$
\begin{aligned}
& \operatorname{NON}(A .) S A M \\
& 0.5=\frac{\varepsilon}{R}-\frac{\varepsilon}{R} e^{-t / r} \\
& \frac{\Sigma}{R} e^{-t / r}=\frac{\varepsilon}{R}-0.5 \\
& 0.75 e^{-t / r}=0.75-0.5 \\
& 0.75 e^{-t / r}=0.25 \\
& e^{-t / r}=\frac{1}{3}
\end{aligned}
$$

$$
\frac{d I}{d t}=(2.4)\left(\frac{1}{\xi}\right)
$$

$=0.8 \mathrm{~A} / \mathrm{s}$ when $I=0.5$
(6) (c)

$$
\begin{aligned}
\text { Nore: } & \frac{t}{y} \\
= & \frac{0.250(5)}{0.3} \\
= & 0.799<1
\end{aligned}
$$

evaluate:

$$
\begin{aligned}
& e^{-0.799}=0.449 \\
& \Gamma=0.95(1-0.449) \\
&=0.413 \mathrm{CA})
\end{aligned}
$$

$$
\text { (d) } \begin{aligned}
& I(t \rightarrow \infty) \\
= & \frac{\varepsilon}{R}\left(1-e^{-\infty}\right) \\
= & \frac{\varepsilon}{R}=0.75(A)
\end{aligned}
$$

