Test t next wask takehome on CH 10, 11, (14) and possibly 13. Final May 29th Cwed)
appeared a 3-hour twe-relati

CHID, CHIL, BASE chant shelt CHIC (continued) Sec 10, 3. zponto

Example Truck on 580 ENDRAY of Rolling: Z Reference frames: at rast recentle TO GROUND Blatest relative to GEIM) tre cm.

OBSERVER ON GROUND. PLOT path of a.
Point on tre rem: excloso PLOT TEP th Rim as wheel Turans

restand: o fourtat ground V = 0 ヒミニュエルツー Parallel-Axis Hm: IR = Icm + Mid but d=R=Radius CEZ S CIUM + MEZ)UZ = EJunut ENREUS

RET E Ling + Ly Um MORIZIMAL RellING DOWN incline! (Noslipping)/ o Etampho of1910.20 $a_x = a_{x_{CM}}$ 149476

Roll W/O SLIPPING DOWN INCline fs = state c friction, Maria PREVENT SLIPPING ax = 9cmx SF = 105 - neg TRanslations Max = mgs/N6 - fs UN PROWAS axifs. Rotations (chapter) = I. of and x= ax/R

Tits = I. of and x = ax/R

Tits = I. of and x = ax/R

R CH9) I've of reaction

note ax=axami TRUMLAtion: max = mgs/n6-fs ROTATEON! Rofs = I ar Solve ler ax ADD, connecl 45 ax (m+ =>) = mgsn6

COMPARE SLIDING

10 fe WHO WINS 130X L you can also use conservations efenorgy to see who wins : See Example 10.5: mgh = \(\frac{1}{2}\Iw\text{Tw}\text{V}^2\) Where W= = 3 FIND

V(at Bottom)

Example of Pool stick mouse of one ball. ANS (English) Extra spin/ polina positive a W decreases as om moves reight. Exerts 9 MORQUE That Reduces a. IX = R. Q 3 W

Teanslation Max = fx mdvan = fx = da for for Red Naho Int A. A. U WOSLINAG Ceal Van = Wir Sw=Very Rolling

20RQUE = ALZ WELL SE THE of impulse by stick on balf. CM Speeds 6+fx+=(4-fx+).R LEGGL Rolling Wo slipping Note: F

MOMENT OF INERTIA PART 2 LAB

SEE EXAMPLE 10.3 OF TEXTBOOK

TODAY WE WILL VERIFY THE KINEMATIC LAW RELATING THE ANGLE OF ROTATION AND THE TIME. FROM PART 1, WE KNOW from EXAMPLE 10.3:

 $h = \frac{1}{2}at^2$, where a is the linear acceleration of and h the vertical distance the hanging mass falls in a time t if it starts from rest. We also know the pulley's angular acceleration is $\alpha = a/r$, where r is the radius of the pulley axle drum. IN ADDITION WE KNOW $\theta = \frac{1}{2}\alpha t^2$ AND ALSO $\theta = h/r$. Thus, we can we plot θ vs. t^2 with

the expectation of a straight line whose slope is $\alpha/2$.

FOR 3 GIVEN ROTATING SYSTEMS YOU WILL PLOT θ vs. t^2 for 4 values of the time t, picking the values of h that produce equally spaced value of t^2 . Here's how you do this. For a given value of maximum drop height h you will reduce the drop height 3 times so t^2 changes in equal increments. Suppose for example the maximum value of the height is H. Thus: $t_1 = t_{max} = \sqrt{\frac{2H}{a}}$, here $H = h_1$. We want the next time to be such that $t_2^2 = \frac{3}{4}t_{max}^2$, thus $h_2 = \frac{3}{4}H$; $t_3^2 = \frac{1}{2}t_{max}^2$, thus $h_3 = \frac{1}{2}H$; $t_4^2 = \frac{1}{4}t_{max}^2$, thus $h_4 = \frac{1}{4}H$.

YOU WILL PLOT THE ANGLE VS THE SQUARE OF TIME AND VERIFY THE LAW OF ROTATION BY OBSERVING A STRAIGHT LINE. YOU WILL MAKE THREE PLOTS OF

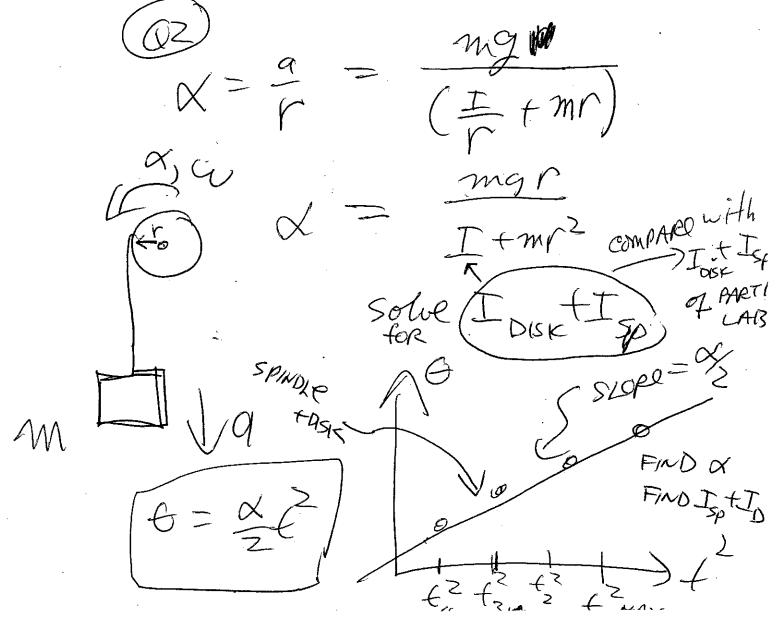
 θ vs. t^2 : With the spindle underneath, YOU WILL PERFORM THE EXPERIMENT WITH (1) THE **DISK ALONE**, (2) THE **RING ALONE** AND THE (3) **RING PLUS THE DISK** AND COMPARE THE SLOPES OF THE LINES GIVEN BY = θ vs. t^2 . You will get time t with a digital timer.

FOR EACH PLOT YOU WILL HAVE 4 DROP HEIGHTS AND FOR EACH OF THE 4 DROP HEIGHTS h, YOU WILL DROP THE HANGING MASS 4 TIMES AND COMPUTE THE AVERAGE TIME. For a particular drop height the angle is the height/r, where r is the radius of the axle drum you will measure.

DATA SHEET:		
r		
SPINDLE + RING		
$h_{L} = H = \max h$	θ_{1}	
TIME t		
a		
b		
С		
d		
Average t		
$h_2 = 3H/4$	θ_2	
TIME t		
a		
ь		
С .		
d		
Average t		
$h_3 = H/2$	θ_3	
TIME t		
a		
Ъ		
С	·	
d		
Average t		
$h_4 = H/4$	θ_4	
TIME t		
a		
Ъ		
С		
d		
Average t		

d

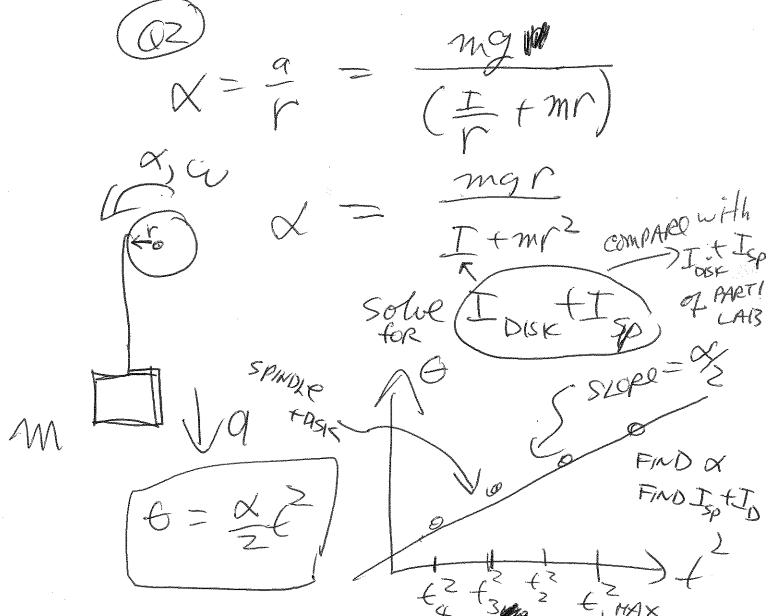
Average t


4 MOMENT OF INERTIA I-PART 2	
SPINDLE + DISK +RING \	Molan LADO HO DO HOLD IN
$h_1 = H = \max h$	θ_1
TIME	101 Continue
a	
b	- MY
C	
d	
Average t	
$h_2 = 3H/4$	θ_2
TIME t	
a	
b	
С	
d	
Average t	
$h_3 = H/2$	θ_3
TIME t	
a	
b	
С	
d	
Average t	
$h_4 = H/4$	θ_4
TIME t	
a	
b	
c	
d	
Average t	

FOR EACH SYSTEM, PLOT θ vs. t^2 . USE LOGGER PRO (WITH NO DEVICE CONNECTED) OR EXCEL TO

GRAPH THE LINE AND FIND THE SLOPE OF θ vs. t^2 .

Q1: EXPLAIN THE DIFFERENCES BETWEEN THE SLOPES OF THE 3 GRAPHS. DOES THE ORDERING OF THE SLOPE MAGNITUDES MAKE SENSE? WHICH SLOPE IS THE LARGEST? THE SMALLEST? IINTERMEDIATE? EXPLAIN USING PHYSICAL PRINCIPLES AND EQUATIONS.


Q2: FROM YOUR SLOPE VALUE FOR THE SPINDLE + DISK, COMPUTE $I_{SP} + I_{DISK}$ AND COMPARE WITH THE VALUE OF $I_{SP} + I_{DISK}$ YOU OBTAINED IN PART 1 OF THIS LABORATORY.

GRAPH THE LINE AND FIND THE SLOPE OF θ vs. t^2 .

Q1: EXPLAIN THE DIFFERENCES BETWEEN THE SLOPES OF THE 3 GRAPHS. DOES THE ORDERING OF THE SLOPE MAGNITUDES MAKE SENSE? WHICH SLOPE IS THE LARGEST? THE SMALLEST? IINTERMEDIATE? EXPLAIN USING PHYSICAL PRINCIPLES AND EQUATIONS.

Q2: FROM YOUR SLOPE VALUE FOR THE SPINDLE + DISK, COMPUTE $I_{SP} + I_{DISK}$ AND COMPARE WITH THE VALUE OF $I_{SP} + I_{DISK}$ YOU OBTAINED IN PART 1 OF THIS LABORATORY.

