1 5 - 3 MOMENT OF INERTIA I

. 1
III Same
LEN 1
The state of the s

MOMENT OF INERTIA LAB

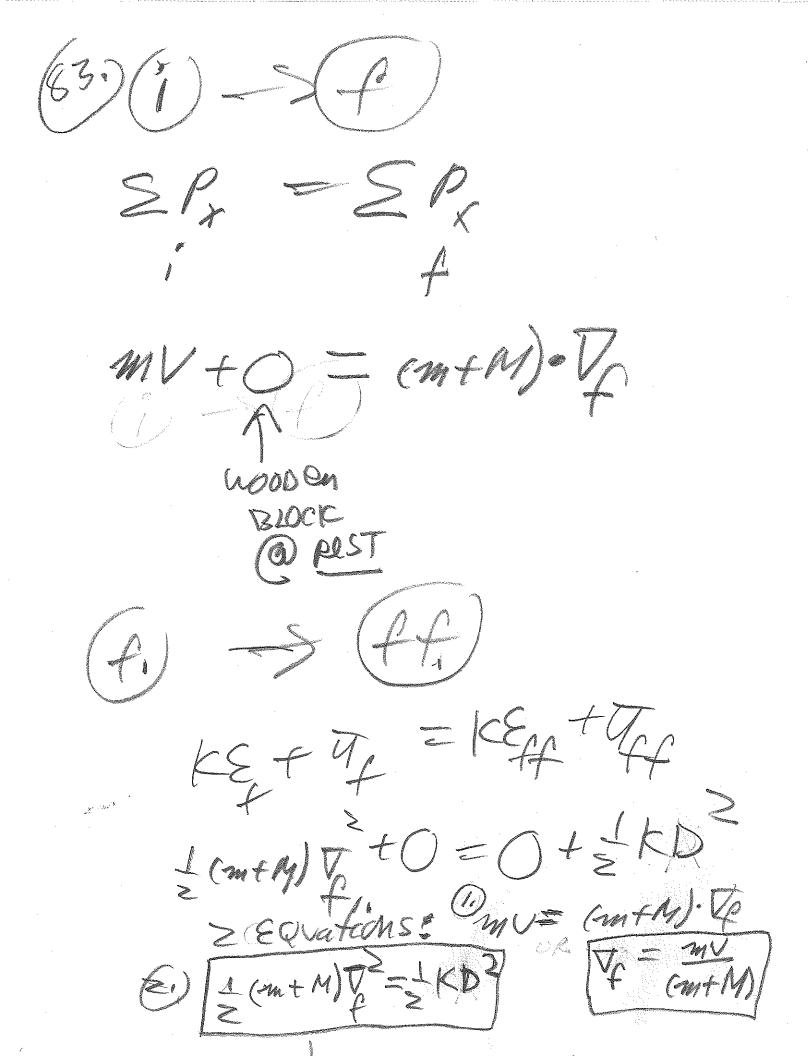
SEE EXAMPLE 10.3 OF TEXTBOOK

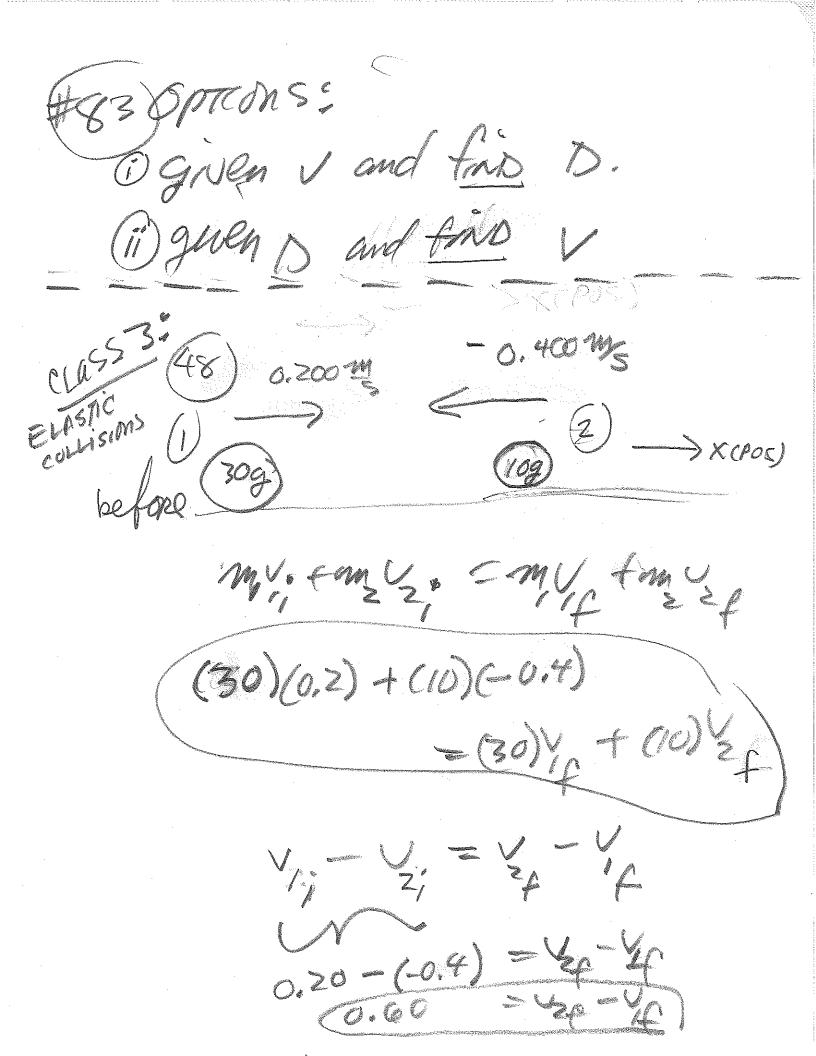
FROM EXAMPLE REFERENCED ABOVE AND FROM CHAPTER 2, IT CAN BE SHOWN

 $I = m\left(\frac{gt^2}{2h}-1\right) \cdot r^2$. We will use this formula to find the moment of

inertia I of a disk and ring and then compare with the theoretical values. Here h is the vertical distance fallen by hanging mass m in time t, and r = radius of axle and I is the moment of inertia for horizontally spinning disk and/or ring of demonstration equipment used in class for the past few weeks. You will measure r with vernier calipers, t with a digital timer, and m is from the weight sets and sits on a 50 g hanger. The data sheet below suggests we must eliminate I for the spindle (SP) to find the ring (RING) and disk (DISK) I's. We will get these I's by subtracting various results given below in data sheet.

DATA SHEET:


DIXIII DIIII.				
r =	m =	h =		
SPINDLE + RII	NG	·	,	
TIME t		$I_{SP} + I_{RING}$		
1 timel		BLank		· ·
2 timez		Blay	k	
3 times		BLAN	K	
4 time4	<u> </u>	13Lan	ik _	12
Average t	AU	average $I_{SP} + I_{R}$	ING Z M	1 70 _/ 12
SPINDLE + DI	SK		<u></u>	2h '/
TIME t	,	$I_{SP} + I_{DISK}$		
1 the		Blank		
2 time:	<u> </u>	Blank		
3 time	· .	Bearl		
4 time	4	Blan		12
Average to 1	tan	average $I_{SP} + I_{D}$	ISK = M	190 -163
	71 •		1 =	
			2	2h


SPINDLE + DISK +RING				
TIME t	$I_{SP} + I_{DISK} + I_{RING}$			
1 track	R. amk.			
2 73	Blank			
3 +3	13Lank 13Lank			
4 - 4	BLAK			
Average t	average $I_{SP} + I_{DISK} + I_{RING} = M$			
1. COMPUTE I _{DISK} USING APPROPRIATE SUBTRACTION.				
2. COMPUTE I _{RING} USING APPROPRIATE SUBTRACTION.				
COMPARE DYNAMIC MEASUREMENTS WITH				
THEORETICAL I-VALUES.				
RING MASS $M_{RING} =$				
RING RADIUS R _{RING} =				
THEORETICAL I _{RING} =				
PERCENŢ DIFFERENCE				
DISK MASS $M_{DISK} =$				
DISK RADIUS $R_{DISK} =$				
THEORETICAL $I_{DISK} =$				
PERCENT DIFFERENCE				

ENTER RAW DATA IN THE ABOVE TABLE. SHOW CALCULATIONAL WORK IN SPACE BELOW AND ATTACHED WHITE SHEETS.

ma= Mg a m+ I a garanta Taranta a reco -1)·1=

Class + CA8 ROVICO 43,) see Example 828 86, 43, 85, 24 m+M) JUST bullet embleddech conservation momentury Used

6-4=30/A+10/2f 30/4/04/ 2f = 0.60 + 4 2= 30 / + 10(0.60+V) 2-34/16 6+1CV 4040 -0,1004 =

We Pid: 12 and by implication 11. (12) Review: 45 + GJ = 150A2 1 check A > 70 = 0.2006m) X= A corlattp) Acref = No -> Acref = 0,2 WASH = 40 = -4 dx 00=400=-COS \$> and sind > 0 - (0.200) = 58.5

(2) CHIF N= 0.383-C02(NE + 58.5°) convert to RADX 1225 RAD X = 0.383.002 (2.25 = +58.4) + # PAD = 5

CHIT:

(AII)
$$X = A \cos 2(a + 4)$$
 $X = A \cos 2(a + 4)$
 $X = -12.0 \text{ M}$
 $X = -12$

-CHIF A0024 = Xd NAGRY = Vo) 0.98 mg = 0 7-W(0,98) SNF =-12 und 5/N(>0/ 0.98 Acoc Cut + 1 Cornt-east - SNAt-SNI TRUR SOLUTION: X=-0.98-SMUE

0 245MUIE unclut slope tunsput loge 24=