1 5 - 3 MOMENT OF INERTIA I

Ladr

MOMENT OF INERTIA LAB

SEE EXAMPLE 10.3 OF TEXTBOOK

FROM EXAMPLE REFERENCED ABOVE AND FROM CHAPTER 2, IT CAN BE SHOWN

 $I = m\left(\frac{gt^2}{2h}-1\right) \cdot r^2$. We will use this formula to find the moment of

inertia I of a disk and ring and then compare with the theoretical values. Here h is the vertical distance fallen by hanging mass m in time t, and r = radius of axle and I is the moment of inertia for horizontally spinning disk and/or ring of demonstration equipment used in class for the past few weeks. You will measure r with vernier calipers, t with a digital timer, and m is from the weight sets and sits on a 50 g hanger. The data sheet below suggests we must eliminate I for the spindle (SP) to find the ring (RING) and disk (DISK) I's. We will get these I's by subtracting various results given below in data sheet.

DATA SHEET:

r = m =	h =	
SPINDLE + RING		
TIME t	$I_{SP} + I_{RING}$	
1 timel	BLank	•
2 timez	Blank	
3 times	BLank	
4 time4	13 Lank	2
Average t) fac	average $I_{SP} + I_{RING} = m \mathcal{I}$	7U_//3
SPINDLE + DISK	<u></u>	h //
TIME t	$I_{SP} + I_{DISK}$	~
1 the/	Blank	
2 finéz	13/ank	
3 time3	Beart	-
4 time4	Blank F	12
Average to take	average $I_{SP} + I_{DISK} = M$	2 163
	4 9	
	$\frac{1}{2}$	ı

SPINDLE + DISK +RING		
TIME t	$I_{SP} + I_{DISK} + I_{RING}$	
1 time	R. Clank	
2 72	Blank	
3 +3	13Lank	
4 +4	BLANK	
Average t Au	average $I_{SP} + I_{DISK} + I_{RING} = M$	
1. COMPUTE I _{DISK} USING APPROPRIATE SUBTRACTION.		
2. COMPUTE I _{RING} USING APPROPRIATE SUBTRACTION.		
COMPARE DYNAMIC MEASUREMENTS WITH		
THEORETICAL I-VALUES.		
RING MASS $M_{RING} =$		
RING RADIUS R _{RING} =		
THEORETICAL I _{RING} =		
PERCENT DIFFERENCE		
DISK MASS M _{DISK} =		
DISK RADIUS R _{DISK} =		
THEORETICAL I _{DISK} =		
PERCENT DIFFERENCE		

ENTER RAW DATA IN THE ABOVE TABLE. SHOW CALCULATIONAL WORK IN SPACE BELOW AND ATTACHED WHITE SHEETS.

ma= Mg a. mts a galash is a ser -1).12

CHE ROVICE cass/ f 43,) see Example 8,8 86,43,85,24 M+M JUST bullet lect at EOST Et x=0 x =0-D conservation

and find ELASTIC (30)(0,2) + (10)(-0,tt) = (30)/0 + (10) 0,20-(-0.4)

6-4=30/4+10/2f 30/2 4 10/24 2f = 0.60 + Y 2= 30 / + 10(0.60+4) 2 3 3 1/4 (-0,10011 = TER COLLISION

SUF we pid: 12 and by implication 11. (12) Review: 2 (2 (2 4) 2 + 2 (3 00) (2 2) = 2 (3 00) A WJ + GJ = 1501 22 5383(m) 150 Chack A > 70 = 0.2006m) X= A core(wt top) Acref = No - DAURY = 42 1x 0=10=-WASM = 0 =-4 cosp> and sind>0 - (0.200) = 58.5

(D) CHIF N = 0.383-C02(NE + 58.5°) CONVERT TO RADX = 1225 RD * X = 0,363.002 (12.25 € + 58.4)

CHIT: OPERATION

(#11)
$$X = A \cos_2(a + f)$$
 $X_0 = A \cos_2(a + f)$
 $X_0 = A \cos_2(a + f)$

-CHIF 40024 = Xd NASING = Vo) 0.98 Und = 0 7-W6,98) SHF =-12 md sm(>0 7 0.98 Acoe Cut + 1 Cozut-Evezy - SNAC-SNI TRUE SALVIEM: X=-0.98.5MUT

044 1451 NONT futslop tousput loope